Commit 23c38919 authored by U-RAJESH-SIS\rajesh's avatar U-RAJESH-SIS\rajesh

fixed figure sizing

parent b368aa58
......@@ -12,7 +12,9 @@ ambient light energy (indoors) is projected to provide~\cite{yildiz2007} a harve
\begin{figure}[!h]
\centering
\includegraphics[height=1.7in,width=2.8in]{patch.png}
\vspace{-0.1in}
\caption{Patch Antenna for RF Harvesting}
\vspace{-0.1in}
\label{fig:patchantenna}
\end{figure}
......
......@@ -6,8 +6,10 @@ We now present results on the evaluation of our wearable prototype, used in cons
\subsection{Experiment Setup}
\begin{figure}
\centering
\includegraphics[height=1.2in,scale=0.3]{setup.jpg}
\caption{Experimental setup for office room user study.}
\includegraphics[height=1.4in,scale=0.5]{setup.jpg}
\vspace{-0.1in}
\caption{Experimental setup for user study.}
\vspace{-0.1in}
\label{fig:exprsetup}
\end{figure}
......@@ -52,8 +54,10 @@ In our first study experiment, we investigate the amount of harvested power that
\begin{figure}
\centering
\includegraphics[scale=0.15]{energy1hour.pdf}
\includegraphics[scale=0.2]{energy1hour.pdf}
\vspace{-0.1in}
\caption{Residual energy after 1 hour at an office desk.}
\vspace{-0.1in}
\label{fig:energy1hour}
\end{figure}
......@@ -68,8 +72,10 @@ Figure~\ref{fig:energy4hour} plots the differential average power of the user, w
\begin{figure}[!htb]
\centering
\includegraphics[scale=0.15]{energy4hour_neg.pdf}
\includegraphics[scale=0.2]{energy4hour_neg.pdf}
\vspace{-0.1in}
\caption{Consumed energy after 4 hour at an office desk.}
\vspace{-0.1in}
\label{fig:energy4hour}
\end{figure}
......@@ -100,16 +106,19 @@ Figures~\ref{fig:2usertime} and~\ref{fig:2userseparated} plot the case for the t
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[height=1.2in, width=2.4in]{2user_time.pdf}
\includegraphics[height=1.4in, width=2.6in]{2user_time.pdf}
\vspace{-0.1in}
\caption{Power drain (2 users) in Multiplexed mode.}
\label{fig:2usertime}
\end{minipage}%
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[height=1.2in, width=2.4in]{2user_neg.pdf}
\includegraphics[height=1.4in, width=2.6in]{2user_neg.pdf}
\vspace{-0.1in}
\caption{Power drain (2 users)in Concurrent mode}
\label{fig:2userseparated}
\end{minipage}
\vspace{-0.1in}
\end{figure*}
% \begin{figure}
......
......@@ -35,7 +35,9 @@ in Figure~\ref{fig:antennaarray}. The WARP system was installed in an office ro
\begin{figure}[!htb]
\centering
\includegraphics[height=1.6in,scale=0.25]{nouser.pdf}
\vspace{-0.1in}
\caption{Differential power (Avg.) of our (static) device}
\vspace{-0.1in}
\label{fig:residual1}
\end{figure}
Our first experiment studied the amount of harvested energy \name could produce, to establish if he overall system was net \emph{energy-positive}--i.e., whether the wearable device could be operated infinitely long based on RF energy harvesting. We placed our wearable device at three different locations, L1, L2 and L3, that were 1.91, 1.32 and 1.17 meter, respectively, from the transmitter with an angle of 45\degree, 28\degree and 0\degree with respect to the transmitter's antenna array. We measured the voltage of the wearable's supercapacitor before and after
......@@ -51,8 +53,10 @@ In other words, $P$ represents the average power differential (averaged over the
\begin{figure}[!htb]
\centering
\includegraphics[height=1.6in,scale=0.25]{capacitorbuffer.pdf}
\includegraphics[height=1.8in,scale=0.3]{capacitorbuffer.pdf}
\vspace{-0.1in}
\caption{Time series of supercapacitor voltage}
\vspace{-0.1in}
\label{fig:residualtime}
\end{figure}
......@@ -64,7 +68,9 @@ Figure~\ref{fig:residual1} shows the results of this experiment. We see that, i
\begin{figure}[!tbh]
\centering
\includegraphics[height=1.6in,scale=0.2]{dutycycle.pdf}
\vspace{-0.1in}
\caption{Differential power (Avg.) vs. AP Trx. Duty cycle.}
\vspace{-0.1in}
\label{fig:dutycycle}
\end{figure}
......@@ -76,7 +82,9 @@ Figure~\ref{fig:dutycycle} plots the residual energy (computed, as before, from
\begin{figure}
\centering
\includegraphics[height=1.6in,scale=0.2]{number_antenna.pdf}
\vspace{-0.1in}
\caption{Harvested Power vs. No. of Antennas.}
\vspace{-0.1in}
\label{fig:numberantenna}
\end{figure}
We next varied the number of transmitting antennas in the WARP transmitter and studied the impact on the residual power. In this experiment, we explicitly plot the \emph{harvested RF power} *using a 10K$\omega$ resistive load) at the supercapacitor--i.e., we disable the wearable system components (microprocessor, sensor and RF frontend). Figure~\ref{fig:numberantenna} plots the resulting values, computed over the 15 minute experimental window. Matching our intuition, a larger number of antennas allows the transmission beamwidth to be smaller, thereby effectively increasing the density of the delivered RF power. However, in practice, an overly thin beam may be counterproductive if the AoA estimation is not sufficiently accurate: the RF beam may be misdirected and too narrow, resulting in a sharp drop in the power harvested by the wearable. pointed at a direction deviated from the device's true location and thus the device may not be charged at all.
......@@ -95,22 +103,26 @@ Figures~\ref{fig:multiplexclose},~\ref{fig:multiplexfar} and~\ref{fig:edev2beam}
\centering
\begin{minipage}{.33\textwidth}
\centering
\includegraphics[height=1.6in, width=2.1in]{multiplexclose.pdf}
\includegraphics[height=1.8in, width=2.1in]{multiplexclose.pdf}
\vspace{-0.1in}
\caption{Time-multiplexed (30cm)}
\label{fig:multiplexclose}
\end{minipage}%
\begin{minipage}{.33\textwidth}
\centering
\includegraphics[height=1.6in, width=2.1in]{multiplexseparated.pdf}
\includegraphics[height=1.8in, width=2.1in]{multiplexseparated.pdf}
\vspace{-0.1in}
\caption{Time-multiplexed (1.7m)}
\label{fig:multiplexfar}
\end{minipage}%
\begin{minipage}{.33\textwidth}
\centering
\includegraphics[height=1.6in,width=2.1 in]{2device2beams.pdf}
\includegraphics[height=1.8in,width=2.1 in]{2device2beams.pdf}
\vspace{-0.1in}
\caption{Concurrent Charging}
\label{fig:edev2beam}
\end{minipage}
\vspace{-0.1in}
\end{figure*}
%\am{Someone pls. format the captions for Figures 12-14}
......
......@@ -22,7 +22,9 @@ In this section, we present the overall functional architecture of \names, detai
\label{fig:step3}
\end{subfigure}
\end{tabular}
\vspace{-0.1in}
\caption{3-step model of \name architecture. a) Step1: The wearable send a ping packet when triggered by gestures. b) Step2: The AP receive ping packets and estimates AoA of the device, and concentrates its energy toward the device. c) Step3: The device harvests the energy and operate its sensors, and transmit the data back the the server once available.}
\vspace{-0.1in}
\label{fig:overview}
\end{figure*}
......@@ -41,8 +43,10 @@ With the adoption of MIMO technologies in the latest 802.11n and 802.11ac WiFi s
\begin{figure}[!htb]
\centering
\includegraphics[scale=0.6]{beamreal.pdf}
\includegraphics[scale=0.7]{beamreal.pdf}
\vspace{-0.1in}
\caption{Beamwidth Observed in Practice (4|8 Antenna Array)}
\vspace{-0.25in}
\label{fig:basicbeamwidth}
\end{figure}
......@@ -51,8 +55,10 @@ For beamformed energy transfer to be effective, the WiFi AP needs to know the lo
\begin{figure}[!htb]
\centering
\includegraphics[scale=0.5]{AoA.pdf}
\includegraphics[scale=0.6]{AoA.pdf}
\vspace{-0.1in}
\caption{AoA Estimation Error)}
\vspace{-0.1in}
\label{fig:musicerror}
\end{figure}
......
\begin{figure}
\centering
\frame{\includegraphics[scale=0.3]{board.pdf}}
\frame{\includegraphics[scale=0.4]{board.pdf}}
\vspace{-0.1in}
\caption{\small Wearable Implementation}
\vspace{-0.2in}
\label{fig:pcbboard}
\end{figure}
\begin{figure}
\centering
\frame{\includegraphics[scale=0.25]{diagram.pdf}}
\vspace{-0.1in}
\caption{ Component-level diagram}
\vspace{-0.1in}
\label{fig:wearablediagram}
\end{figure}
......@@ -25,8 +29,10 @@ In our current effort, we do not focus on the development of the ``best harveste
\begin{figure}[!h]
\centering
\includegraphics[scale=0.25]{harvester.pdf}
\includegraphics[scale=0.35]{harvester.pdf}
\vspace{-0.15in}
\caption{RF Harvester: FR4 PCB \& hand-tuned inductor.}
\vspace{-0.2in}
\label{fig:harvester}
\end{figure}
......@@ -42,8 +48,10 @@ To minimize the unnecessary energy drain of the wearable device, we adopt a trig
\begin{figure}[!htb]
\centering
\includegraphics[scale=0.35]{triggerwave.png}
\includegraphics[scale=0.4]{triggerwave.png}
\vspace{-0.1in}
\caption{Voltage generate by motion trigger when the magnet moves.}
\vspace{-0.1in}
\label{fig:triggervoltage}
\end{figure}
......@@ -78,7 +86,9 @@ We now briefly describe the experimental setup of a \name prototype in our lab.
\label{fig:rxantenna}
\end{subfigure}
\end{tabular}
\vspace{-0.1in}
\caption{The 2 sets of antenna array. a) Transmitter antenna for beamformed energy. b) Receiver antenna for AoA estimation.}
\vspace{-0.1in}
\label{fig:antennaarray}
\end{figure}
......@@ -97,16 +107,18 @@ Via our experimental studies, we are interested in not only studying the wearabl
\begin{tabular}[c]{cc}
\begin{subfigure}[b]{.2\textwidth}
\centering
\includegraphics[scale=0.32]{User_censored.jpg}
\includegraphics[scale=0.38]{User_censored.jpg}
\label{fig:user}
\end{subfigure}&
\begin{subfigure}[b]{.2\textwidth}
\centering
\includegraphics[scale=0.25]{UserHand.jpg}
\includegraphics[scale=0.3]{UserHand.jpg}
\label{fig:userhand}
\end{subfigure}
\end{tabular}
\vspace{-0.1in}
\caption{User wearing the wearable prototype.}
\vspace{-0.1in}
\label{fig:wearablecontainer}
\end{figure}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment